Leetcode Coding Interview template for common code patterns

Mani
Mani
Educating everyone with the beauty of programming!!
Leetcode Coding Interview template for common code patterns

Two pointers: one input, opposite ends

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public int fn(int[] arr) {
    int left = 0;
    int right = arr.length - 1;
    int ans = 0;

    while (left < right) {
        // do some logic here with left and right
        if (CONDITION) {
            left++;
        } else {
            right--;
        }
    }

    return ans;
}

Two pointers: two inputs, exhaust both

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
public int fn(int[] arr1, int[] arr2) {
    int i = 0, j = 0, ans = 0;

    while (i < arr1.length && j < arr2.length) {
        // do some logic here
        if (CONDITION) {
            i++;
        } else {
            j++;
        }
    }

    while (i < arr1.length) {
        // do logic
        i++;
    }

    while (j < arr2.length) {
        // do logic
        j++;
    }

    return ans;
}

Sliding window

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public int fn(int[] arr) {
    int left = 0, ans = 0, curr = 0;

    for (int right = 0; right < arr.length; right++) {
        // do logic here to add arr[right] to curr

        while (WINDOW_CONDITION_BROKEN) {
            // remove arr[left] from curr
            left++;
        }

        // update ans
    }

    return ans;
}

Build a prefix sum

1
2
3
4
5
6
7
8
9
10
public int[] fn(int[] arr) {
    int[] prefix = new int[arr.length];
    prefix[0] = arr[0];

    for (int i = 1; i < arr.length; i++) {
        prefix[i] = prefix[i - 1] + arr[i];
    }

    return prefix;
}

Efficient string building

1
2
3
4
5
6
7
8
public String fn(char[] arr) {
    StringBuilder sb = new StringBuilder();
    for (char c: arr) {
        sb.append(c);
    }

    return sb.toString();
}

In JavaScript, benchmarking shows that concatenation with += is faster than using .join().

Linked list: fast and slow pointer

1
2
3
4
5
6
7
8
9
10
11
12
13
public int fn(ListNode head) {
    ListNode slow = head;
    ListNode fast = head;
    int ans = 0;

    while (fast != null && fast.next != null) {
        // do logic
        slow = slow.next;
        fast = fast.next.next;
    }

    return ans;
}

Reversing a linked list

1
2
3
4
5
6
7
8
9
10
11
12
public ListNode fn(ListNode head) {
    ListNode curr = head;
    ListNode prev = null;
    while (curr != null) {
        ListNode nextNode = curr.next;
        curr.next = prev;
        prev = curr;
        curr = nextNode;
    }

    return prev;
}

Find number of subarrays that fit an exact criteria

1
2
3
4
5
6
7
8
9
10
11
12
13
public int fn(int[] arr, int k) {
    Map<Integer, Integer> counts = new HashMap<>();
    counts.put(0, 1);
    int ans = 0, curr = 0;

    for (int num: arr) {
        // do logic to change curr
        ans += counts.getOrDefault(curr - k, 0);
        counts.put(curr, counts.getOrDefault(curr, 0) + 1);
    }

    return ans;
}

Monotonic increasing stack

The same logic can be applied to maintain a monotonic queue.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public int fn(int[] arr) {
    Stack<Integer> stack = new Stack<>();
    int ans = 0;

    for (int num: arr) {
        // for monotonic decreasing, just flip the > to <
        while (!stack.empty() && stack.peek() > num) {
            // do logic
            stack.pop();
        }

        stack.push(num);
    }

    return ans;
}

Binary tree: DFS (recursive)

1
2
3
4
5
6
7
8
9
10
11
public int dfs(TreeNode root) {
    if (root == null) {
        return 0;
    }

    int ans = 0;
    // do logic
    dfs(root.left);
    dfs(root.right);
    return ans;
}

Binary tree: DFS (iterative)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public int dfs(TreeNode root) {
    Stack<TreeNode> stack = new Stack<>();
    stack.push(root);
    int ans = 0;

    while (!stack.empty()) {
        TreeNode node = stack.pop();
        // do logic
        if (node.left != null) {
            stack.push(node.left);
        }
        if (node.right != null) {
            stack.push(node.right);
        }
    }

    return ans;
}

Binary tree: BFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
public int fn(TreeNode root) {
    Queue<TreeNode> queue = new LinkedList<>();
    queue.add(root);
    int ans = 0;

    while (!queue.isEmpty()) {
        int currentLength = queue.size();
        // do logic for current level

        for (int i = 0; i < currentLength; i++) {
            TreeNode node = queue.remove();
            // do logic
            if (node.left != null) {
                queue.add(node.left);
            }
            if (node.right != null) {
                queue.add(node.right);
            }
        }
    }

    return ans;
}

Graph: DFS (recursive)

For the graph templates, assume the nodes are numbered from 0 to n - 1 and the graph is given as an adjacency list. Depending on the problem, you may need to convert the input into an equivalent adjacency list before using the templates.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Set<Integer> seen = new HashSet<>();

public int fn(int[][] graph) {
    seen.add(START_NODE);
    return dfs(START_NODE, graph);
}

public int dfs(int node, int[][] graph) {
    int ans = 0;
    // do some logic
    for (int neighbor: graph[node]) {
        if (!seen.contains(neighbor)) {
            seen.add(neighbor);
            ans += dfs(neighbor, graph);
        }
    }

    return ans;
}

Graph: DFS (iterative)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
public int fn(int[][] graph) {
    Stack<Integer> stack = new Stack<>();
    Set<Integer> seen = new HashSet<>();
    stack.push(START_NODE);
    seen.add(START_NODE);
    int ans = 0;

    while (!stack.empty()) {
        int node = stack.pop();
        // do some logic
        for (int neighbor: graph[node]) {
            if (!seen.contains(neighbor)) {
                seen.add(neighbor);
                stack.push(neighbor);
            }
        }
    }

    return ans;
}

Graph: BFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
public int fn(int[][] graph) {
    Queue<Integer> queue = new LinkedList<>();
    Set<Integer> seen = new HashSet<>();
    queue.add(START_NODE);
    seen.add(START_NODE);
    int ans = 0;

    while (!queue.isEmpty()) {
        int node = queue.remove();
        // do some logic
        for (int neighbor: graph[node]) {
            if (!seen.contains(neighbor)) {
                seen.add(neighbor);
                queue.add(neighbor);
            }
        }
    }

    return ans;
}

Find top k elements with heap

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public int[] fn(int[] arr, int k) {
    PriorityQueue<Integer> heap = new PriorityQueue<>(CRITERIA);
    for (int num: arr) {
        heap.add(num);
        if (heap.size() > k) {
            heap.remove();
        }
    }

    int[] ans = new int[k];
    for (int i = 0; i < k; i++) {
        ans[i] = heap.remove();
    }

    return ans;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public int fn(int[] arr, int target) {
    int left = 0;
    int right = arr.length - 1;
    while (left <= right) {
        int mid = left + (right - left) / 2;
        if (arr[mid] == target) {
            // do something
            return mid;
        }
        if (arr[mid] > target) {
            right = mid - 1;
        } else {
            left = mid + 1;
        }
    }

    // left is the insertion point
    return left;
}

Binary search: duplicate elements, left-most insertion point

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public int fn(int[] arr, int target) {
    int left = 0;
    int right = arr.length;
    while (left < right) {
        int mid = left + (right - left) / 2;
        if (arr[mid] >= target) {
            right = mid
        } else {
            left = mid + 1;
        }
    }

    return left;
}

Binary search: duplicate elements, right-most insertion point

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public int fn(int[] arr, int target) {
    int left = 0;
    int right = arr.length;
    while (left < right) {
        int mid = left + (right - left) / 2;
        if (arr[mid] > target) {
            right = mid;
        } else {
            left = mid + 1;
        }
    }

    return left;
}

Binary search: for greedy problems

If looking for a minimum:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public int fn(int[] arr) {
    int left = MINIMUM_POSSIBLE_ANSWER;
    int right = MAXIMUM_POSSIBLE_ANSWER;
    while (left <= right) {
        int mid = left + (right - left) / 2;
        if (check(mid)) {
            right = mid - 1;
        } else {
            left = mid + 1;
        }
    }

    return left;
}

public boolean check(int x) {
    // this function is implemented depending on the problem
    return BOOLEAN;
}

If looking for a maximum:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public int fn(int[] arr) {
    int left = MINIMUM_POSSIBLE_ANSWER;
    int right = MAXIMUM_POSSIBLE_ANSWER;
    while (left <= right) {
        int mid = left + (right - left) / 2;
        if (check(mid)) {
            left = mid + 1;
        } else {
            right = mid - 1;
        }
    }

    return right;
}

public boolean check(int x) {
    // this function is implemented depending on the problem
    return BOOLEAN;
}

Backtracking

1
2
3
4
5
6
7
8
9
10
11
12
13
public int backtrack(STATE curr, OTHER_ARGUMENTS...) {
    if (BASE_CASE) {
        // modify the answer
        return 0;
    }

    int ans = 0;
    for (ITERATE_OVER_INPUT) {
        // modify the current state
        ans += backtrack(curr, OTHER_ARGUMENTS...)
        // undo the modification of the current state
    }
}

Dynamic programming: top-down memoization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Map<STATE, Integer> memo = new HashMap<>();

public int fn(int[] arr) {
    return dp(STATE_FOR_WHOLE_INPUT, arr);
}

public int dp(STATE, int[] arr) {
    if (BASE_CASE) {
        return 0;
    }

    if (memo.contains(STATE)) {
        return memo.get(STATE);
    }

    int ans = RECURRENCE_RELATION(STATE);
    memo.put(STATE, ans);
    return ans;
}

Build a trie

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
// note: using a class is only necessary if you want to store data at each node.
// otherwise, you can implement a trie using only hash maps.
class TrieNode {
    // you can store data at nodes if you wish
    int data;
    Map<Character, TrieNode> children;
    TrieNode() {
        this.children = new HashMap<>();
    }
}

public TrieNode buildTrie(String[] words) {
    TrieNode root = new TrieNode();
    for (String word: words) {
        TrieNode curr = root;
        for (char c: word.toCharArray()) {
            if (!curr.children.containsKey(c)) {
                curr.children.put(c, new TrieNode());
            }

            curr = curr.children.get(c);
        }

        // at this point, you have a full word at curr
        // you can perform more logic here to give curr an attribute if you want
    }

    return root;
}