Longest Common Subsequence (Leetcode 1143) - Coding Interview Question
Given two strings text1
and text2
, return the length of their longest common
subsequence. If there is no common subsequence, return 0
.
A subsequence of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters.
- For example,
"ace"
is a subsequence of"abcde"
.
A common subsequence of two strings is a subsequence that is common to both strings.
Example 1:
Input: text1 = "abcde", text2 = "ace" Output: 3 Explanation: The longest common subsequence is "ace" and its length is 3.
Example 2:
Input: text1 = "abc", text2 = "abc" Output: 3 Explanation: The longest common subsequence is "abc" and its length is 3.
Example 3:
Input: text1 = "abc", text2 = "def" Output: 0 Explanation: There is no such common subsequence, so the result is 0.
Constraints:
1 <= text1.length, text2.length <= 1000
text1
andtext2
consist of only lowercase English characters.
Solution:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
class LongestCommonSubsequence {
Integer[][] dp;
public int longestCommonSubsequence(String s1, String s2) {
return lcsIterative(s1, s2);
// dp = new Integer[s1.length()][s2.length()];
// return lcs(s1, s2, 0, 0);
}
//Dynamic Programming Iterative approach.
int lcsIterative(String s1, String s2) {
int[][] dp = new int[s1.length() + 1][s2.length() + 1];
for (int i = 1; i <= s1.length(); i++) {
for (int j = 1; j <= s2.length(); j++) {
if (s1.charAt(i - 1) == s2.charAt(j - 1)) {
dp[i][j] = 1 + dp[i - 1][j - 1];
} else {
dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);
}
}
}
return dp[s1.length()][s2.length()];
}
int lcs(String s1, String s2, int n, int m) {
if (n == s1.length() || m == s2.length()) {
return 0;
}
if (dp[n][m] != null) {
return dp[n][m];
}
int res = 0;
if (s1.charAt(n) == s2.charAt(m)) {
res = 1 + lcs(s1, s2, n + 1, m + 1);
} else {
res = Math.max(lcs(s1, s2, n + 1, m), lcs(s1, s2, n, m + 1));
}
dp[n][m] = res;
return res;
}
}